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Despite their shortcomings, choropleth soil maps remain the most widespread source of information on soil
resources. Since most nationwide soil surveys were conducted in the second half of the previous century, a
need for upgrading emerges. We evaluated the potential of detailed observations made by a mobile, non-
invasive proximal soil sensor to upgrade a part of the 1/20,000 choropleth soil map of Belgium. This study
was conducted on a 14 ha area which had been mapped twice in the 1950s: first, during the national soil
survey yielding a 1/20,000 soil map, and second, during a detailed investigation resulting in a 1/5000 map.
The first map failed to identify the presence of a Tertiary clay substratum at variable depths, while the second
map indicated this substratum to be present within 1.2 m below the soil surface for about a third of the area.
A recent survey with the EM38DD soil sensor provided 9192 measurements of the apparent electrical
conductivity (ECa) within the study area. The depth of the substratum (Dts) was noted at 60 calibration
locations by augering and the relationship between ECa and Dts was modelled by an exponential curve with
an R2 of 0.80. This allowed the detailed mapping of Dts by regression kriging. The predictions were validated
using 46 independent observations of Dts indicating a reasonable average error of 0.24 m and a very good
correlation coefficient between observed and predicted values of 0.94. A map accuracy assessment indicated
that even after classification, the Dts classes were better predicted by the sensor data than the 1/5000 map
which was based on many more auger observations. Finally an upgraded 1/20,000 soil map was presented,
illustrating the potential of combining existing soil maps with proximal soil sensing technology.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Choropleth, or polygon, soil maps are the traditional source of
information for land suitability analysis (Beckett and Burrough, 1971;
Rossiter, 1996). During the last century, most European countries
conducted nationwide surveys resulting in soil maps published on
scales between 1/20,000 (e.g. Belgium) and 1/100,000 (e.g. Denmark),
mostly with the aim to support agricultural development. Nowadays,
increased pressure on sustainable use of limited land resources
demands for land use decisions at much smaller scales (e.g. precision
agriculture) and for more diverse land uses. So different decision
support tools, such as process-based land evaluation frameworks, soil
quality assessment and simulation models require highly detailed
spatial information about soil properties (Finke, 2007). Moreover,
many land characteristics vary within the recordedmapping units and
ignoring this variation strongly reduces the accuracy and the reliability

of choropleth soil maps (Heuvelink and Webster, 2001). Nevertheless
these shortcomings, polygon-based national soil maps remain the
major source of soil information available inmost countries. Therefore,
Finke (2007) highlighted the need to upgrade the existing polygon-
based soil maps by adding new or correcting wrong information.

The traditional way to upgrade a soil map was to conduct a new
survey, either at a similar scale but focussing on other soil properties, or
at a more detailed scale to obtain a better representation of the spatial
variability of the mapped soil properties (Dent and Young, 1981). More
recently, map upgrading attempts have been made by combining the
predictions obtained by interpolating soil observationswith predictions
by soil polygon maps (Voltz and Webster, 1990; Van Meirvenne et al.,
1994). But these invasive methods require large field survey efforts and
thus they are often limited by the cost and time constraints associated
with intensive field sampling and laboratory analysis (Oberthür et al.,
1999). Recent developments in proximal non-invasive soil sensing
techniques offer new opportunities to improve the soil map accuracy
with considerable reductions in samplingeffort (Adamchuk et al., 2004).

Our objective was to compare a more detailed soil map (scale 1/
5000) with mobile measurements of the apparent electrical con-
ductivity obtained with a georeferenced electromagnetic induction
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(EMI) soil sensor (the EM38DD) to upgrade an existing 1/20,000 soil
map. This objective will be evaluated for a 14 ha area in Belgium,
where the existing soil map needs to be upgradedwith information on
the depth to a Tertiary substratum.

2. Materials and methods

2.1. Study area

The 14 ha study area was located in Melle, Belgium, with central
coordinates: 50° 58′ 42″N and 3° 49′ 00″ E (Fig.1). This area is a part of
the Ghent University agricultural research farm and situated in the
sandy silt (sandy loam to silt loam in the USDA textural classification)
agro-pedological region of the country. During theWeichselian glacial
stage of the Late Pleistocene (80 ka–10 ka), wind-blown loess was
deposited over this area, covering the surfacing Tertiary layers. This
loess cover can have a substantial thickness in the depressions (5–
10 m), but it can diminish to some tens of centimetres on the ridges.
The Tertiary substratum consists of sandy or clayey formations from
the Early Eocene (55 Ma–49 Ma). The elevation of the study area
declines gradually from 22 m above mean sea level in the western
corner to 15 m in the eastern corner.

2.2. 1/20,000 soil map

The Belgian national soil survey was conducted between 1947 and
1973. It proceeded by taking soil auger observations, down to 1.25m, at
an average density of one observation per 0.7 to 1 ha.Within the study

area this map indicated the presence of two soil series (see further Fig.
6b). Approximately two-third of the area belongs to series ‘Ldc’, which
represents a sandy silt topsoil texture (‘L’) (according to Belgian
soil textural triangle; Tavernier and Maréchal, 1962), moderately
wet conditions (drainage class ‘d’) with a strongly degraded textural
B-horizon (profile development type ‘c’). The remaining part of the
study area is characterized by the soil series ‘Lcc’, with a similar topsoil
texture and profile development but with drier moisture conditions
(drainage class ‘c’). These soil types correspond to Albeluvisols
according to the WRB classification system (FAO/ISRIC/ISSS, 1998).
The Belgian soil map legend used a prefix to indicate the depth and
nature of a shallow substratum observable within augering depth
(a substratum represents a contrasting layerwith a different texture). If
a clayey substratumwas encountered in the top 0.75m, a prefix ‘u’was
added to the soil series.When this substratumwas foundbetween 0.75
and 1.25 m then the prefix was ‘(u)’. No prefix implicated that no
substratum was observed within 1.25 m from the soil surface. The
latter situation is the case in our study area, where according to the soil
map there should be no substratum within the top 1.25 m (Fig. 2(a)).

2.3. 1/5000 soil map

Since our study area is a part of the experimental farm of the
UGent, it was surveyed again in more detail in 1951. Therefore, an
intensive survey was conducted with about 15 observations per ha,
summing to approximately 210 augerings within the study area. This
resulted in a choropleth soil map at a scale of 1/5000. For unclear
reasons, the depth limits were slightly modified: 0.6 and 1.2 m instead

Fig. 1. (a) Localization of the study area in Belgium and (b) study area with observation points of the depth to the Tertiary clay substratum.

Fig. 2. Information about the depth to the clay substratum (Dts) as provided by the two soil maps: (a) at a scale of 1/20,000 and (b) at a scale of 1/5000.
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of 0.75 and 1.25 m as used on the 1/20,000 map. Contrarily to the 1/
20,000 map, this map indicated the presence of a clayey substrate
within 1.2m, in some parts evenwithin 0.6m, over about a third of the
area (Fig. 2(b)).

2.4. EMI soil sensor

We applied EMI to measure the apparent electrical conductivity
(ECa in mS m−1) of our study area. Therefore the dual dipole EM38DD
(Geonics Limited, ON, Canada) soil sensor was used. This sensor
operates simultaneously in horizontal and vertical dipole orientations
providing ECa−H and ECa−V measurements, respectively. Seventy
percent of the response of these signals comes from the top 0.75 m,
and top 1.60 m, of the soil, respectively (McNeil, 1980). In April 2006,
the sensor was mounted on a sled which was pulled by an all terrain
vehicle at a speed of about 15 km h−1 along 4 m spaced parallel-lines
guided by a light-bar guidance system. Every second, ECa−H and ECa−V
measurements were recorded by a field computer together with an
Omnistar corrected Trimble AgGPS332 (Trimble Navigation Limited,
CA, USA) signal to georeference the measurements accurately. To
calibrate the ECa measurements, 60 observations were made of the
depth to the Tertiary clay substratum (Dts). Fifty-five locations were
selected using a stratified random procedure picking randomly one
location within cells of 50 by 50 m. The remaining five observations
were located along the edges of the study area (Fig. 1(b)). At all
locations a distinct and abrupt boundary was observed between the
Pleistocene sediment and the underlying Tertiary clay substratum
within a depth of 3m. Sometimes pebbles indicated the presence of a
former erosion surface on top of the Tertiary layer facilitating its
identification.

2.5. Data analysis

Dts was interpolated using regression kriging (Odeh et al., 1995).
Therefore, the Dts estimate at any unsampled location (z⁎(x0)) was
obtained in five steps: (1) ECa−V was interpolated to a 2.5 m×2.5 m
grid by ordinary kriging procedure with local variograms (Minasny
et al., 2005; Taylor et al., 2007); (2) a regression analysis was used to
fit a model describing the relationship between ECa−V and Dts, then
the latter was predicted at every grid location x0, yielding Dts,r⁎(x0);
(3) at the 60 locations where Dts was measured, xα (α=1,…, 60), the
difference between the observed and predicted depth was calcu-
lated as:

r xαð Þ ¼ Dts xαð Þ−D �
ts;r xαð Þ

n o

resulting in 60 residuals r(xα); (4) these residuals were interpolated to
every grid node x0 using simple kriging with a mean of zero and the
variogram of the residuals γ̂ (h):

γ̂ hð Þ ¼ 1
2N hð Þ ∑

N hð Þ

α¼1
r xα þ hð Þ−r xαð Þf g2

with N(h) the number of pairs of residuals {r(xα),r(xα+h)} separated
by a distance vector h; (5) Dts,r⁎(x0) and the interpolated residuals
r(x0)⁎ were added to obtain the prediction of Dts⁎ at every grid node:

D �
ts x0ð Þ ¼ D �

ts;r x0ð Þ þ r x0ð Þ�:

The accuracy of the Dts predictions was validated by 46 additional
observations of Dts. These observations were taken along three
transects ensuring that both the smallest and largest Dts predicted
by EMI sensing and 1/5000 map were visited adequately. The
prediction accuracy was evaluated by calculating three validation
indices: the mean prediction error (MPE), the root mean squared
prediction error (RMSPE) and the Pearson correlation coefficient (r)
between the predictions and the measurements.

To evaluate the accuracies of the different soil maps, class
predictions by each map were compared with 46 ground truth
observations. The result was summarised in a confusion matrix
(Lillesand and Kiefer, 1994). Every element of this matrix (xlk)
represents the number of ground truth observations belonging to
the depth class k which belongs to class l of the soil map. The
diagonal elements (xkk) represent the agreement between the
observations and map predictions. The overall map accuracy (θ1)
was calculated as:

θ1 ¼ 1
n
∑
K

k¼1
xkk

with n the total number of validation observations and K the
number of classes. However, not all favourable θ1 values implicate
high map accuracies, because some classes may occupy much
larger areas than others and thus dominate the validation sample
(Finke, 2007). Therefore, the interpretation of θ1 needs to be
supplemented with a kappa index of overall agreement (κ)
obtained from (Cohen, 1960):

κ ¼ θ1−θ2
1−θ2

given that θ2 ¼ 1
n2 ∑

K

k¼1
xk�x�k with xk· and x·k the marginal sums of

rows and columns of the confusion matrix. This index provides an
indication of the non-coincidental agreement between the observa-
tions and the predictions and ranges from −1 to 1. Landis and Koch

Table 1
Descriptive statistics of ECa measured in horizontal (ECa−H) and vertical (ECa−V) dipole
modes (9192 samples) and of the 60 observations of the depth to the Tertiary clay
substratum (Dts)

Mean Minimum Maximum SDa CVb Skewness

ECa−V (mS m−1) 47.2 22.2 78.0 11.9 25.3 0.07
ECa−H (mS m−1) 38.9 20.8 64.4 7.7 19.8 0.15
Dts (m) 1.6 0.5 2.9 0.65 41.1 0.18

a SD = standard deviation.
b CV = coefficient of variation (%).

Fig. 3. Depth to the Tertiary clay substratum (Dts) as a function of apparent electrical
conductivity measured with the EM38DD in the vertical dipole mode (ECa−V) with
empirical exponential regression fit.
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(1977) divided this range into classes with the aim of providing an
indication about the degree of correspondence: ≤0=poor, 0.01–
0.20=slight, 0.21–0.40=fair, 0.41–0.60=moderate, 0.61–0.80=substan-
tial and 0.81–1=almost perfect.

3. Results and discussion

3.1. Relationship between ECa and Dts

On average, the 9192 ECa−V measurements were larger than
the colocated ECa−H measurements (Table 1), which indicated the
presence of a higher conductive subsoil below less conductive
topsoil. The coefficient of variations of the two distributions
indicated a larger variation of ECa−V. However, both measurements
showed an approximate symmetric distribution, as shown by
their near to zero coefficient of skewness. Moreover, a very strong
correlation between both measurements (r=0.98) and identical
spatial patterns indicated the large degree of similarity of both
measurements.

The Dts observations revealed its presence at shallow to deeper
depths (Table 1) across the study area. Nevertheless, a large variation
of observations was evident by its coefficient of variation value. The
small skewness coefficient proved that the distribution of Dts is almost
symmetrical. According to the class limits used for the 1/20,000 soil
map legend, 12% of the observations was classified as shallow
(≤0.75 m), 28% as moderate (N0.75 m and ≤1.25 m) and 60% as deep
(N1.25 m).

The correlations between Dts and ECa−V and Dts and ECa−H were
negative: −0.90 and −0.87, respectively. Considering the higher
correlation and deeper sensing depth we preferred the ECa−V
measurements as a covariate to predict Dts. The relationship between
these two variables was best fit by an exponential regression (Fig. 3)
with a coefficient of determination (R2) of 0.80:

Dts ¼ 6:7 exp −0:03 ECa−Vð Þ:

Similar strong non-linear relationships between interface depths
of contrasting soil layers and ECa were observed by Doolittle et al.
(1994), Cockx et al. (2007) and Saey et al. (2008). However, Brus et
al. (1992) reported a poor non-linear relationship between ECa and
depth to boulder clay substratum, probably due to a lack of
sufficiently strong contrast in textural composition between the
boulder clay and the material above it.

3.2. Mapping Dts

An isotropic spherical variogram was found to represent the
experimental variogram of the residuals best (Fig. 4a):

γ hð Þ ¼ C0 þ C1
3h
2a

−
1
2

h
a

� �3
( )

if 0 b h V a

γ hð Þ ¼ C0 þ C1 if h N a; and
γ 0ð Þ ¼ 0

:

The map of Dts⁎ is given in Fig. 4b. It can be observed that the
Tertiary clay substratumwas predicted to occur quite deep (1.5–2.7 m)
in the western corner of the study area, which coincides with the
highest soil surface elevations within the study area. Shallow to
moderate depths (0.4–1.50 m) were mapped over the largest part of
the western half of the study area. This undeep position of the
substratum can be expected to influence crop performance and soil
management, hence the importance tomap it accurately. In the eastern
part, the substratum was predicted to occur deeper again (1.5–3.0 m).

3.3. Validation of Dts predictions

TheMPEwas 0.02m, the RMSPEwas 0.24m and rwas 0.94 (Fig. 5).
The combination of the near-to zero MPE value and a close to one r

Fig. 4. (a) Theoretical (curve) semivariogram model (with fitted parameters) fitted to the experimental semivariogram (points) for the depth to the Tertiary clay substratum (Dts)
residuals and (b) map of interpolated Dts predictions obtained after regression kriging.

Fig. 5. Validation of predicted depth to the Tertiary clay substratum (Dts) using 46
observed depths.
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value indicated that the predictions were on average aligned close to
the 1–1 line of the scatter plot. An average prediction error of 0.24m is
quite acceptable given the range of this variable and the measurement
errors associated with auger observations in the field.

To quantify and compare the different map accuracies, both θ1 and
κwere calculated for the two soil maps (Fig. 2(a) and (b)) and the map
of Dts predictions (Fig. 4(b)) classified according to the depth class
limits of the 1/20,000 map. The 1/20,000 soil map, which did not
indicate any variation in Dts, had a θ1=0.60 with a κ=0. Obviously
these values indicate a poor map accuracy in respect to the prediction
of Dts. The 1/5000 soil map had a larger overall accuracy (θ1=0.83) and
kappa index (κ=0.70) which represent a much better correspondence
between observed and predicted depth classes. The classified Dts map
obtained with the EMI sensor (Fig. 6a) was found to be the most
accurate, with θ1=0.89 and an excellent κ=0.82.

3.4. Upgrading the 1/20,000 soil map

The upgrading of the 1/20,000 choropleth soil map can be done
either by incorporating the predicted Dts information as a continuous
layer into the 1/20,000 digitized soil map or by redefining soil series
based on this new information. Here we implemented the second
approach to facilitate a comparison with the two choropleth maps.
Therefore, the Dts predictions classified according to the 1/20,000map
legend, were added to the soil map. A few very small map units
(b0.1 ha) were omitted. The resulting upgraded 1/20,000 soil map is
given in Fig. 6b.

The upgraded 1/20,000 soil map divides the two original two soil
series into six variants. Thewestern half of the study areawas strongly

modified compared to the original map. Unlike the original map,
nearly half of the upgraded map is covered with soil series denoting
the presence of a shallow (prefix ‘u’) or amoderately deep (prefix ‘(u)’)
Tertiary clay substratum. The classification of the predicted Dts map
into substratum classes according to the conventional legend did not
include Dts classes below the lower limit of 1.25 m. Therefore, no
modifications took place in the eastern part of the study area.

4. Conclusions

In our study area, the national soil survey produced a 1/20,000 soil
map based on approximately 14–20 soil augerings. These failed to
identify the presence of a Tertiary clay substratumwithin 1.25mbelow
the soil surface. A more detailed survey, based on approximately 210
augerings, allowed to produce a 1/5000 map that indicated the
presence of a substratum at various depths. An accuracy assessment of
this map revealed that it predicted Dts much better (θ1=0.83 and
κ=0.70) than the original 1/20,000 map. So this indicates that the past
solution to improve detailed map predictions by increasing the map
scale and taking more observations proved to be successful.

Modern technology, however, allows to go a step further. More
than nine thousand ECa observations obtained with the EM38DD
sensor provided abundant informationwhich could be strongly linked
to the depth of the Tertiary substratum. We used 60 augerings to
establish this relationship. Predictions were validated and found to be
sufficiently accurate. After classifying these predictions the accuracy of
the map was superior to the 1/5000 map: θ1=0.89 and a κ=0.82. This
study demonstrates the potential of EMI-based proximal soil sensors
to upgrade existing soil maps.
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